ADIKAVI NANNAYA UNIVERSITY:: RAJAHMAHENDRAVARAM

B.Sc Zoology Syllabus (w.e.f: 2020-21 A.Y) Course Outcomes:

B. Sc	Semester: III	Credits:4
Paper: 3	Cell Biology, Genetics, Molecular Biology and Evolution	Hrs/Wk:4

The overall course outcome is that the student shall develop deeper understanding of what life is and how it functions at cellular level. This course will provide students with a deep knowledge in Cell Biology, Animal Biotechnology and Evolution and by the completion of the course the graduate shall able to—

- To understand the basic unit of the living organisms and to differentiate the organisms by their cell structure.
- Describe fine structure and function of plasma membrane and different cell organelles of eukaryotic cell.
- To understand the history of origin of branch of genetics, gain knowledge on heredity, interaction of genes, various types of inheritance patterns existing in animals
- Acquiring in-depth knowledge on various of aspects of genetics involved in sex determination, human karyo typing and mutations of chromosomes resulting in various disorder.
- Understand the central dogma of molecular biology and flow of genetic information from DNA to proteins.
- Understand the principles and forces of evolution of life on earth, the process of evolution of new species and apply the same to develop new and advanced varieties of animals for the benefit of the society.

Learning Objectives

- To understand the origin of cell and distinguish between prokaryotic and eukaryotic cell.
- To understand the role of different cell organelles in maintenance of life activities.
- To provide the history and basic concepts of heredity, variations and gene interaction.
- To enable the students distinguish between polygenic, sex-linked, and multiple allelic modes of inheritance.
- To acquaint student with basic concepts of molecular biology as to how characters are expressed with a coordinated functioning of replication, transcription and translation in all living beings.
- To provide knowledge on origin of life, theories and forces of evolution.
- To understand the role of variations and mutations in evolution of organisms.

UNIT I:

Cell Biology: Definition, history, prokaryotic and eukaryotic cells, virus, viroids, mycoplasma Electron microscopic structure of animal cell. Plasma membrane –Models and transport functions of plasma membrane. Structure and functions of Golgi complex, Endoplasmic Reticulum and Lysosomes Structure and functions of Ribosomes, Mitochondria, Nucleus, Chromosomes

(Note: 1. General pattern of study of each cell organelle – Discovery, Occurrence, Number, Origin, Structure and Functions with suitable diagrams)

2. Need not study cellular respiration under mitochondrial functions)

UNIT II:

Genetics-I: Mendel's work on transmission of traits Gene Interaction – Incomplete Dominance, Codominance, Lethal Genes Polygene's (General Characteristics & examples); Multiple Alleles (General Characteristics and Blood group inheritance Sex determination (Chromosomal, Genic Balance, Hormonal, Environmental and Haplo- diploidy types of sex determination) Sex linked inheritance (X-linked, Y-linked & XY-linked inheritance)

UNIT III:

Genetics - II: Mutations & Mutagenesis, Chromosomal Disorders (Autosomal and Allosomal) Human Genetics – Karyo typing, Pedigree Analysis(basics)Basics on Genomics and Proteomics

UNIT IV:

Molecular Biology: Central Dogma of Molecular BiologyBasic concepts of-

- 1. DNA replication Overview (Semi-conservative mechanism, Semi-discontinuous mode, Origin & Propagation of replication fork)
- 2. Transcription in prokaryotes Initiation, Elongation and Termination, Post-transcriptional modifications(basics)
- 3. Translation Initiation, Elongation and Termination Gene Expression in prokaryotes (Lac Operon); Gene Expression in eukaryotes

UNIT V:

Origin of life Theories of Evolution: Lamarckism, Darwinism, Germ Plasm Theory, Mutation Theory Neo-Darwinism: Modern Synthetic, Theory of Evolution, Hardy-Weinberg Equilibrium Forces of Evolution: Isolating mechanisms, Genetic Drift, Natural Selection, Speciation

Co-curricular activities (Suggested)

- Model of animal cell
- Working model of mitochondria to encourage creativity among students
- Photo album of scientists of cell biology
- Charts on plasma membrane models/cell organelles
- Observation of Mendelian / Non-Mendelian inheritance in the plants of college botanical garden or local village as a student study project activity
- Observation of blood group inheritance in students, from their parents and grandparents
- Karyo typing and preparation of pedigree charts for identifying diseases in family history
- Charts on chromosomal disorders
- Charts on central dogma/lac Operon/geneticcode
- Model of semi-conservative model of DNA replication
- Model of tRNA and translationechanism
- Power point presentation of transcription or any other topic by students
- Draw geological time scale and highlight important events along the timeline
- Chart on industrial melanism to teach directed selection, Darwin's finches to teach genetic drift, collection of data on weight of children born in primary health centres to teach stabilizing selection etc.

REFERENCE BOOKS:

- 1. Lodish, Berk, Zipursky, Matsudaria, Baltimore, Darnell 'Molecular Cell Biology' W.H.Freeman and company New York.
- 2. Cell Biology by DeRobertis
- 3. Bruce Alberts, Molecular Biology of the Cell
- 4. Rastogi, Cytology
- 5. Varma & Aggarwal, Cell Biology
- 6. C.B. Pawar, Cell Biology
- 7. Gardner, E.J., Simmons, M.J., Snustad, D.P. (2008). Principles of Genetics. VIII Edition. Wiley India
- 8. Snustad, D.P., Simmons, M.J. (2009). Principles of Genetics. V Edition. John Wileyand SonsInc.
- 9. Klug, W.S., Cummings, M.R., Spencer, C.A. (2012). Concepts of Genetics. X Edition. Benjamin Cummings.
- 10. Russell, P. J. (2009). Genetics- A Molecular Approach. III Edition. BenjaminCummings.
- 11. Griffiths, A.J.F., Wessler, S.R., Lewontin, R.C. and Carroll, S.B. Introductionto Genetic Analysis. IX Edition. W. H. Freeman and Co.
- 12. Ridley, M. (2004). Evolution. III Edition. Blackwell Publishing

- 13. Molecular Biology by freifielder
- 14. Instant Notes in Molecular Biology by Bios scientific publishers and Viva BooksPrivate Limited
- 15. Hall, B. K. and Hallgrimsson, B. (2008). Evolution. IV Edition. Jones and BartlettPublishers
- 16. Campbell, N. A. and Reece J. B. (2011). Biology. IX Edition, Pearson, Benjamin, Cummings.
- 17. Douglas, J. Futuyma (1997). Evolutionary Biology. Sinauer Associates.
- 18. Minkoff, E. (1983). Evolutionary Biology. Addison-Wesley.
- 19. James D. Watson, Nancy H. Hopkins 'Molecular Biology of the Gene'
- 20. Jan M. Savage. Evolution, 2nd ed, Oxford and IBH Publishing Co., New Delhi.
- 21. Gupta P.K.. Genetics

B. Sc	Semester: III	Credits:1
Paper: 3(L)	Cell Biology, Genetics, Molecular Biology and Evolution Lab	Hrs/Wk:2

Learning Objectives:

Acquainting and skill enhancement in the usage of laboratory microscope Hands-on experience of differentphases of cell division by experimentation Develop skills on human Karyo typing and identification of chromosomal disorders

To apply the basic concept of inheritance for applied research

To get familiar with phylogeny ad geological history of origin & evolution of animals

I. Cell Biology

- 1. Preparation of temporary slides of Mitotic divisions with onion root tips
- 2. Observation of various stages of Mitosis and Meiosis with prepared slides
- 3. Mounting of salivary gland chromosomes of Chiranomous

II. Genetics

- 1. Study of Mendelian inheritance using suitable examples and problems.
- 2. Problems on blood group inheritance and sex linked inheritance.
- 3. Study of human Karyo types (Down's syndrome, Edwards, syndrome, Patausyndrome, Turner's syndrome and Klinefelter syndrome).

III. Evolution

- 1. Study of fossil evidences.
- 2. Study of homology and analogy from suitable specimens and pictures.
- 3. Phylogeny of horse with pictures.
- 4. Study of Genetic Drift by using examples of Darwin's finches(pictures).
- 5. Visit to Natural History Museum and submission of report.

REFERENCE BOOKS:

- 1. Burns GW. 1972. The Science of Genetics. An Introduction to Heredity. Mac MillanPubl.Co.Inc.
- 2. Gardner EF. 1975. Principles of Genetics. John Wiley & Sons, Inc. NewYork.
- 3. Harth and Jones EW. 1998. *Genetics Principles and Analysis*. Jones and BarHett Publ.Boston.
- 4. Levine L. 1969. Biology of the Gene. Toppan.
- 5. Pedder IJ. 1972. Genetics as a Basic Guide. W. Norton & Company, Inc.
- 6. Rastogi VB. 1991. *A Text Book of Genetics*. KedarNath Ram Nath Publications, Meerut, UttarPradesh,India.
- 7. Rastogi VB. 1991. *Organic Evolution*. KedarNath Ram Nath Publications, Meerut, UttarPradesh, India.
- 8. Stahl FW. 1965. Mechanics of Inheritance. Prentice-Hall.
- 9. White MJD. 1973. Animal Cytology and Evolution. Cambridge Univ. Press.